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A B S T R A C T

In this study, a deterministic remote state preparation protocol is presented for the preparation of arbitrary
two-qubit entangled states through a seven-qubit entangled channel prepared from the state proposed by Borras
et al. (2007). The implementation of any protocol for quantum communication is inherently susceptible to
quantum noise, presenting a challenge to the reliability and security of quantum communication systems. The
introduction of noise results in a transition from a pure to a mixed quantum state. This paper examines six
distinct noise models, including bit-flip noise, phase-flip noise, bit-phase-flip noise, amplitude damping, phase
damping, and depolarizing noise, and analyzes their impact on the entangled channel. The alterations to the
density matrices resulting from the introduction of noise are evaluated. The fidelity between the original and
remotely prepared quantum states is also analyzed and visually represented. Additionally, a thorough security
analysis is conducted to demonstrate the robustness of the protocol against both internal and external attacks.
. Introduction

Quantum communication and quantum information theory are
ranches of physics and computer science that deal with the manipula-
ion and transfer of quantum-based information. This includes the use
f quantum systems, such as atoms and photons, to encode, transmit,
nd process information in ways that are fundamentally different
rom classical methods [1]. The field of quantum communication and
nformation theory has seen the emergence of several innovative phe-
omena, including quantum teleportation [2,3], quantum cryptogra-
hy [4,5], quantum secure direct communication (QSDC) [6], quantum
ey distribution [7–9], quantum dense coding [10], quantum secret
haring [11,12], quantum data hiding [13], quantum private compari-
on (QPC) [14], and quantum remote state preparation (RSP) [15,16].
hese developments have had a significant impact on the advancement
f quantum communication and information theory. Some recent arti-
les on improving the existing parameter optimization in decoy-state
uantum key distribution are studied in [17]. Together, these fields
ave the potential to revolutionize the way we store, transmit and
rocess information. One of the key concepts in these fields is quantum
ntanglement, where two or more quantum systems become linked in
uch a way that the properties of one system are dependent on the
roperties of the other, even when separated by large distances. In all of
hese quantum communication protocols, use of an entangled channel
or secure quantum communication is an important area of research. At
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least in theory, quantum protocols have the potential to attain a better
degree of security than their conventional counterparts.

Remote state preparation (RSP) is a technique that makes use of
entanglement to prepare a quantum state in one location based on
measurements made in another location. The sender uses a shared
entangled channel and the right measurements to set up a known
quantum state for the faraway receiver. RSP is believed to be a more
efficient method of teleporting to a known state than the traditional
method since it uses fewer classical bits [18]. Since then, several dis-
tinct RSP algorithms [19,20] were put up as potential solutions. These
included joint remote state preparation (JRSP) [21–23] and controlled
remote state preparation (CRSP) [24] and deterministic controlled bidi-
rectional remote state preparation via a six-qubit entangled state [25].
On the other hand, the vast majority of RSP algorithms made in the
past have a chance of success that is less than 1. To raise the success
probability of RSP to 1, a new RSP algorithm called the deterministic
remote state preparation (DRSP) algorithm [26,27] was proposed. This
algorithm can set up the needed quantum state with a one-on-one
chance of success, which saves a lot of quantum resources. In recent
years, several fascinating studies about RSP have been carried out. A
unique technique for the implementation of RSP of a generic m-qubit
entangled state was suggested by Wang et al. [28] by employing the
GHZ-type states as quantum channels with a high success probabil-
ity, reducibility, and generalizability. This strategy was developed by
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Table 1
Here are the operations that Bob must do on his qubits in order to obtain a state based on the results of Alice and Charlie/David.
Here 𝐶𝑋1−2 represents the CNOT gate from qubit 1 to 2, 𝐻1 represents the Hadamard gate on qubit 1, 𝑍2 represents the Z gate on
qubit 2, and 𝑋2 represents the not operation on qubit 2.
Alice’s outcome Charlie & David’s outcome Bob’s collapse state Bob’s operations

|𝛶1⟩𝐴 |00⟩𝐶1𝐶2
|00⟩𝐷1𝐷2

1
√

2
(𝛼 |00⟩ + 𝛽 |10⟩ + 𝛼 |11⟩ − 𝛽 |01⟩) 𝐶𝑋1−2 𝐻1 𝑍1

|𝛶1⟩𝐴 |01⟩𝐶1𝐶2
|01⟩𝐷1𝐷2

1
√

2
(𝛼 |01⟩ + 𝛽 |11⟩ + 𝛼 |10⟩ − 𝛽 |00⟩) 𝐶𝑋1−2 𝐻1 𝑋2 𝑍1

|𝛶1⟩𝐴 |10⟩𝐶1𝐶2
|00⟩𝐷1𝐷2

1
√

2
(−𝛼 |01⟩ + 𝛽 |11⟩ − 𝛼 |10⟩ − 𝛽 |00⟩) 𝐶𝑋1−2 𝐻1 𝑍1 𝑍2 𝑋2

|𝛶1⟩𝐴 |11⟩𝐶1𝐶2
|01⟩𝐷1𝐷2

1
√

2
(𝛼 |00⟩ − 𝛽 |10⟩ + 𝛼 |11⟩ + 𝛽 |01⟩) 𝐶𝑋1−2 𝐻1

|𝛶1⟩𝐴 |00⟩𝐶1𝐶2
|10⟩𝐷1𝐷2

1
√

2
(−𝛼 |01⟩ + 𝛽 |11⟩ + 𝛼 |10⟩ + 𝛽 |00⟩) 𝐶𝑋1−2 𝐻1 𝑍1 𝑋1 𝑋2

|𝛶1⟩𝐴 |10⟩𝐶1𝐶2
|10⟩𝐷1𝐷2

1
√

2
(𝛼 |00⟩ + 𝛽 |10⟩ − 𝛼 |11⟩ + 𝛽 |01⟩) 𝐶𝑋1−2 𝐻1 𝑍2 𝑋1 𝐶𝑋2−1

|𝛶1⟩𝐴 |10⟩𝐶1𝐶2
|11⟩𝐷1𝐷2

1
√

2
(𝛼 |00⟩ − 𝛽 |10⟩ − 𝛼 |11⟩ − 𝛽 |01⟩) 𝐶𝑋1−2 𝐻1 𝑍2 𝑋1

|𝛶1⟩𝐴 |11⟩𝐶1𝐶2
|11⟩𝐷1𝐷2

1
√

2
(𝛼 |01⟩ + 𝛽 |11⟩ − 𝛼 |10⟩ + 𝛽 |00⟩) 𝐶𝑋1−2 𝐻1 𝑋2 𝑋1

|𝛶2⟩𝐴 |00⟩𝐶1𝐶2
|00⟩𝐷1𝐷2

1
√

2
(𝛼 |10⟩ − 𝛽 |00⟩ − 𝛼 |01⟩ − 𝛽 |11⟩) 𝐶𝑋1−2 𝐻1 𝑍1 𝑋1 𝑋2 𝑍1

|𝛶2⟩𝐴 |01⟩𝐶1𝐶2
|01⟩𝐷1𝐷2

1
√

2
(𝛼 |11⟩ − 𝛽 |01⟩ − 𝛼 |00⟩ − 𝛽 |10⟩) 𝐶𝑋1−2 𝐻1 𝑍2 𝑍1 𝑋1

|𝛶2⟩𝐴 |10⟩𝐶1𝐶2
|00⟩𝐷1𝐷2

1
√

2
(𝛼 |11⟩ + 𝛽 |01⟩ − 𝛼 |00⟩ + 𝛽 |10⟩) 𝐶𝑋1−2 𝐻1 𝑍1 𝑋1

|𝛶2⟩𝐴 |11⟩𝐶1𝐶2
|01⟩𝐷1𝐷2

1
√

2
(−𝛼 |10⟩ − 𝛽 |00⟩ + 𝛼 |01⟩ − 𝛽 |11⟩) 𝐶𝑋1−2 𝐻1 𝑋1 𝑋2 𝑍1

|𝛶2⟩𝐴 |00⟩𝐶1𝐶2
|10⟩𝐷1𝐷2

1
√

2
(𝛼 |11⟩ + 𝛽 |01⟩ + 𝛼 |00⟩ − 𝛽 |10⟩) 𝐶𝑋1−2 𝐻1

|𝛶2⟩𝐴 |10⟩𝐶1𝐶2
|10⟩𝐷1𝐷2

1
√

2
(𝛼 |10⟩ − 𝛽 |00⟩ + 𝛼 |01⟩ + 𝛽 |11⟩) 𝐶𝑋1−2 𝐻1 𝑍1 𝑋2

|𝛶2⟩𝐴 |10⟩𝐶1𝐶2
|11⟩𝐷1𝐷2

1
√

2
(−𝛼 |10⟩ − 𝛽 |00⟩ − 𝛼 |01⟩ + 𝛽 |11⟩) 𝐶𝑋1−2 𝐻1 𝑍1 𝑍2 𝑋2

|𝛶2⟩𝐴 |11⟩𝐶1𝐶2
|11⟩𝐷1𝐷2

1
√

2
(𝛼 |11⟩ − 𝛽 |01⟩ + 𝛼 |00⟩ + 𝛽 |10⟩) 𝐶𝑋1−2 𝐻1 𝑍1
|

s
p
t

|

using the GHZ-type states. Wang et al. [29] suggested two successful
measurement-based ways for executing the RSP techniques for generic
W-class entangled states for three and four particles, employing GHZ-
type states as the quantum channels in the same year. In comparison to
the previous schemes, these approaches stand a better chance of being
implemented successfully with a higher success probability compared
to the existing schemes. In addition, the suggested methods may be
successfully implemented with a total success probability of one when
the utilized channels are condensed into the most maximally entangled
versions of themselves. Wang et al. [30] proposed two optics-based
implementations for RSP and JRSP of an arbitrary single-photon pure
state. The protocols for these implementations may be achieved with a
specific success probability with the assistance of an appropriate LOCC.

Quantum noise is a term used to describe the unwanted distur-
bances that can occur in a quantum communication system. These
disturbances can take many forms, such as photon loss, phase noise,
and detector noise, and can have a significant impact on the per-
formance of the system. Quantum noise can limit the distance over
which quantum information can be transmitted, and can also intro-
duce errors in the encoded data. Researchers are actively working to
develop techniques to mitigate the effects of quantum noise in order
to improve the reliability and performance of quantum communication
systems. Research on RSP [31,32] in noisy environments is now being
conducted and explored. In [33] effect of noise on remote preparation
of an arbitrary single-qubit state is studied. The JRSP method was
computed in amplitude-damping noise, and phase-damping noise by
Guan et al. [34], who also conducted an in-depth analysis of the
impact that noise has on the output state. Ma et al. [27] examined
the influence of amplitude-damping and phase-damping noise on the
DJRSP method and presented a deterministic approach for constructing
distant states using a Brown et al. state as the underlying channel.
In [35] the noisy environment is studied for deterministic joint remote
state preparation of an arbitrary two-qubit state. A complexity analysis
of the teleportation scheme under the influence of noise is studied
in [36]. In [37], it is shown that arbitrary high-dimensional quantum
entanglement can be protected from amplitude-damping decoherence
by weak measurement and reversal.

Motivated by these schemes, we have proposed a secure protocol
for the deterministic remote state preparation of a two-qubit qubit
quantum state via a maximally entangled seven-qubit state that is
derived from Borras et al. state [38]. The use of highly entangled
Borras et al. state in the remote state preparation has not been done
in any of the schemes proposed till now. This scheme involves four
2

participants in preparation for the remote state. Alice, Bob, Charlie,
and David share a predetermined seven-qubit entangled channel. Alice
has the first qubit, Bob has the second and third, Charlie has the
fourth and sixth, and David has the last two qubits, which are the
fifth and seventh. The first action that has to be performed is to
factorize the entangled channel into the sum of the Bell basis states
that have the same coefficients as the two-qubit state that needs to
be prepared remotely. Then Alice measures her qubit and conveys the
result to Bob through a classical channel. Charlie and David likewise
communicate their outcomes to Bob via classical channels. Finally, in
order to remotely prepare the desired two qubit-state, Bob needs to
perform a certain unitary operation on his qubit based on the collapse
state of other participants. All the recovery operations are discussed in
detail in Table 1. Next, we will study the impact of six types of noise
on the entangled channel. These six kinds of noise are named bit-flip
noise, phase-flip noise, bit-phase-flip noise, amplitude damping, phase
damping, and depolarizing noise. These noise models are studied with
the help of the action of the Kraus operator on the qubit. When the
Kraus operator acts on a quantum state, it becomes a mixed state. Upon
evaluation of the density matrices, the fidelity is calculated between the
initial state and the remotely prepared state. The variation in fidelity is
represented with the help of a graph. In [24], the security analysis of
the remote state preparation protocol is performed. This study analyzes
the security attack from the outside and the inside participants.

The rest of the article is structured as follows: Section 2 covers
introductory terminology about the underlying entangled channel and
remote state preparation procedures. In Section 3, the noise analysis of
the entangled teleportation channel is described. Section 4 consists of
the security analysis of the protocol, and Section 5 concludes the report
with a discussion of the results.

2. Remote state preparation of an arbitrary two-qubit state

Suppose Alice, Bob, Charlie, and David are the participants in this
system. Alice, Charlie, and David combined together, and want to
remotely prepare a known quantum state at Bob’s end. The two-qubit
quantum state can be parameterized as |𝜉⟩ = 𝛼|00⟩ + 𝛽|11⟩, where
𝛼|2 + |𝛽|2 = 1 takes care of the normalization of the state |𝜙⟩. The
even-qubit entangled channel shared among the participants can be
repared by using the Borras et al. [38] state and an ancilla qubit in
he |0⟩ state. The Borras et al. state is given by

𝜓⟩ = 1(
|000⟩(|0⟩|𝜓+

⟩ + |1⟩|𝜙+
⟩) + |001⟩(|0⟩|𝜙−

⟩ − |1⟩|𝜓−
⟩)
4
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Fig. 1. (a) Schematic illustration of the protocol for remote state preparation. (b) Quantum circuit representation of the RSP scheme.
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+ |010⟩(|0⟩|𝜙+
⟩ − |1⟩|𝜓+

⟩) + |011⟩(|0⟩|𝜓−
⟩ + |1⟩|𝜙−

⟩)

− |100⟩(|0⟩|𝜙−
⟩ + |1⟩|𝜓−

⟩) + |101⟩(−|0⟩|𝜓+
⟩ + |1⟩|𝜙+

⟩)

+ |110⟩(|0⟩|𝜓−
⟩ − |1⟩|𝜙−

⟩) + |111⟩(|0⟩|𝜙+
⟩ + |1⟩|𝜓+

⟩)
)

(1)

where |𝜙±
⟩ = 1

√

2
(|01⟩ ± |10⟩) and |𝜓±

⟩ = 1
√

2
(|00⟩ ± |11⟩). The ancilla

qubit is entangled with the Borras et al. state and the final entangled
channel is given by the following equation

|𝛹⟩ =
(

|𝜓⟩123456 ⊗ |0⟩7
)

𝐶𝑋(6,7)

= 1

4
√

2

(

|0000000⟩ + |0000111⟩ + |0001011⟩ + |0001100⟩ + |0010011⟩

− |0010100⟩ − |0011000⟩ + |0011111⟩ + |0100011⟩ + |0100100⟩

− |0101000⟩ − |0101111⟩ + |0110000⟩ − |0110111⟩ + |0111011⟩

− |0111100⟩ − |1000011⟩ + |1000100⟩ − |1001000⟩ + |1001111⟩

− |1010000⟩ − |1010111⟩ + |1011011⟩ + |1011100⟩ + |1100000⟩

− |1100111⟩ − |1101011⟩ + |1101100⟩ + |1110011⟩ + |1110100⟩

+ |1111000⟩ + |1111111⟩
)

𝐴𝐵1𝐵2𝐶1𝐷1𝐶2𝐷2
(2)

The Borras et al. state is a six-qubit highly entangled state, which in-
cluded two-qubit maximally entangled Bell states, |𝜙±

⟩ and |𝜓±
⟩ [38].

ecause the prepared entangled state |𝛹⟩ was generated using the C-
OT operation on a highly entangled six-qubit Borras et al. state, which

s considered to add entanglement to a quantum state, we believe that
t is indeed extremely entangled, if not maximally entangled. Once
he entangled channel is obtained, Alice reserves the first qubit for
erself and distributes the other qubits as follows: Bob receives the
econd and third qubits, Charlie receives the fourth and sixth qubits,
nd David receives the fifth and seventh qubits. Alice owns the qubit
, Bob owns the qubits 𝐵1 and 𝐵2, Charlie owns the qubits 𝐶1 and 𝐶2,
nd David owns the qubits 𝐷1 and 𝐷2. In order to remotely prepare
he quantum state at Bob’s end, the factorization of the quantum state
lays a crucial role. So, the known state |𝛹⟩ is primarily factorized in
certain way that only the sender utilizes a basis created out of the

nown parameters 𝛼 and 𝛽. Here the factorization of |𝛹⟩ can be done
in the following basis -

|𝛹⟩ = 1
4

[

|𝛶1⟩|𝜁1⟩ + |𝛶2⟩|𝜁2⟩
]

𝐴𝐵1𝐵2𝐵2𝐶1𝐶2𝐷1𝐷2
(3)

where the quantum state |𝛶1⟩ and |𝛶1⟩ are given by the Eq. (4)

|𝛶1⟩𝐴 = (𝛼 |0⟩ + 𝛽 |1⟩)𝐴
|𝛶2⟩𝐴 = (𝛼 |1⟩ − 𝛽 |0⟩)𝐴 (4)

Here the coefficients 𝛼 and 𝛽 are considered as real numbers, and the
controlled RSP using six-qubit Brown et al. with complex coefficients
is studied in [24]. The quantum states |

|

𝜁1⟩ and |

|

𝜁2⟩ are given by the
following expressions

|𝜁1⟩ =
1
√

[

(

𝛼 |00⟩ + 𝛽 |10⟩ + 𝛼 |11⟩ − 𝛽 |01⟩
)

𝐵1𝐵2
|00⟩𝐶1𝐶2 |00⟩𝐷1𝐷2
2

3

+
(

𝛼 |01⟩ + 𝛽 |11⟩ + 𝛼 |10⟩ − 𝛽 |00⟩
)

𝐵1𝐵2
|01⟩𝐶1𝐶2 |01⟩𝐷1𝐷2

+
(

−𝛼 |01⟩ + 𝛽 |11⟩ − 𝛼 |10⟩ − 𝛽 |00⟩
)

𝐵1𝐵2
|10⟩𝐶1𝐶2 |00⟩𝐷1𝐷2

+
(

𝛼 |00⟩ − 𝛽 |10⟩ + 𝛼 |11⟩ + 𝛽 |01⟩
)

𝐵1𝐵2
|11⟩𝐶1𝐶2 |01⟩𝐷1𝐷2

+
(

−𝛼 |01⟩ + 𝛽 |11⟩ + 𝛼 |10⟩ + 𝛽 |00⟩
)

𝐵1𝐵2
|00⟩𝐶1𝐶2 |10⟩𝐷1𝐷2

+
(

𝛼 |00⟩ + 𝛽 |10⟩ − 𝛼 |11⟩ + 𝛽 |01⟩
)

𝐵1𝐵2
|10⟩𝐶1𝐶2 |10⟩𝐷1𝐷2

+
(

𝛼 |00⟩ − 𝛽 |10⟩ − 𝛼 |11⟩ − 𝛽 |01⟩
)

𝐵1𝐵2
|01⟩𝐶1𝐶2 |11⟩𝐷1𝐷2

+
(

𝛼 |01⟩ + 𝛽 |11⟩ − 𝛼 |10⟩ + 𝛽 |00⟩
)

𝐵1𝐵2
|11⟩𝐶1𝐶2 |11⟩𝐷1𝐷2

]

(5)

𝜁2⟩ =
1
√

2

[

(

𝛼 |10⟩ − 𝛽 |00⟩ − 𝛼 |01⟩ − 𝛽 |11⟩
)

𝐵1𝐵2
|00⟩𝐶1𝐶2 |00⟩𝐷1𝐷2

+
(

𝛼 |11⟩ − 𝛽 |01⟩ − 𝛼 |00⟩ − 𝛽 |10⟩
)

𝐵1𝐵2
|01⟩𝐶1𝐶2 |01⟩𝐷1𝐷2

+
(

𝛼 |11⟩ + 𝛽 |01⟩ − 𝛼 |00⟩ + 𝛽 |10⟩
)

𝐵1𝐵2
|10⟩𝐶1𝐶2 |00⟩𝐷1𝐷2

+
(

−𝛼 |10⟩ − 𝛽 |00⟩ + 𝛼 |01⟩ − 𝛽 |11⟩
)

𝐵1𝐵2
|11⟩𝐶1𝐶2 |01⟩𝐷1𝐷2

+
(

𝛼 |11⟩ + 𝛽 |01⟩ + 𝛼 |00⟩ − 𝛽 |10⟩
)

𝐵1𝐵2
|00⟩𝐶1𝐶2 |10⟩𝐷1𝐷2

+
(

𝛼 |10⟩ − 𝛽 |00⟩ + 𝛼 |01⟩ + 𝛽 |11⟩
)

𝐵1𝐵2
|10⟩𝐶1𝐶2 |10⟩𝐷1𝐷2

+
(

−𝛼 |10⟩ − 𝛽 |00⟩ − 𝛼 |01⟩ + 𝛽 |11⟩
)

𝐵1𝐵2
|01⟩𝐶1𝐶2 |11⟩𝐷1𝐷2

+
(

𝛼 |11⟩ − 𝛽 |01⟩ + 𝛼 |00⟩ + 𝛽 |10⟩
)

𝐵1𝐵2
|11⟩𝐶1𝐶2 |11⟩𝐷1𝐷2

]

(6)

Now Alice measure her qubit in the basis {|𝛶1⟩, |𝛶1⟩}, Charlie and
avid measure their qubits in {|00⟩ , |01⟩ , |10⟩ , |11⟩} basis then Bob can
asily remotely prepare the state |𝜉⟩ knowing the outcome of Alice,
harlie and David. For instance, if Alice’s measurement collapse in
he state |

|

𝛶1⟩𝐴, Charlie and David’s measurement collapse to the state
01⟩𝐶1𝐶2 |01⟩𝐷1𝐷2

after then, each participant will use a conventional
hannel to communicate their results to Bob. Bob will next be required
o do the necessary unitary operations on his qubit in order to remotely
repare the state at his end., in this case, Bob will apply a controlled-
ot gate form ‘‘his first qubit’’ to the second qubit (𝐵1 to 𝐵2), denoted
s 𝐶𝑋1−2. A Hadamard gate on his first qubit, denoted as 𝐻(1), again
not operation on his second qubit, denoted as 𝑋2, and finally a 𝑍1

ate on his first qubit to flip the phase of the first qubit. At this stage
f the protocol, Bob has successfully prepared the quantum state |𝜉⟩ at

his end.All the other possible cases are given in Table 1. The schematic
diagram and the underlying quantum circuit for the protocol is given
in Fig. 1.

3. Effect of noisy environment on the quantum channel

The influence that noise has on the quantum channel will be the
topic of our next discussion. Ambiguities are produced in the quantum
system as a result of the fact that a real quantum system does not
operate in perfect circumstances and that it interacts with its surround-
ing environment. This kind of ambiguity is described by the phrase

quantum noise. Quantum noise must be taken into account in order
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to undertake precise research on a quantum communication method.
In any actual quantum experiment conducted in the real world, the
noise will play a crucial role in deciding the success of the scheme.
These noises may be studied and classified into one of six categories.
Bit flip, phase flip, bit-phase flip, amplitude damping, phase damping,
and depolarizing noise are the six fundamental forms of quantum noise
that may occur in quantum channels. In this section, these six forms of
quantum noise are examined. Therefore, the most productive course
of action would be to investigate the causes and consequences of the
system’s noises and to seek to reduce their impact wherever feasible.
We can analyze this by studying the evolution of the density matrix
𝜌 = |𝜓⟩⟨𝜓| with the help of Kraus operators. The impact of noise on the
quantum channel can be done using the operator sum representation.
The action of Kraus operators 𝐸𝑘 on a particular qubit 𝑘 described by
the density matrix 𝜌𝑘 is given by the Eq. (7)

𝑟(𝜌𝑘) =
𝑛
∑

𝑗=1

(

𝐸𝑗
)

𝜌𝑘
(

𝐸𝑗
)† (7)

where 𝑟 ∈ {𝑏,𝑤, 𝑓 , 𝑎, 𝑝, 𝑑} for bit-flip, phase-flip, bit-phase-flip, ampli-
ude damping, phase damping and depolarizing damping respectively,
∈ {0, 1} for 𝑟 = 𝑏,𝑤, 𝑓 , 𝑎, 𝑗 ∈ {0, 1, 2} for 𝑟 = 𝑝 and 𝑗 ∈ {0, 1, 2, 3} for
= 𝑑.

Alice retains the first qubit and transfers the remaining qubits to
ob, Charlie, and David. After the distribution of qubits in a noisy
nvironment, the shared entangled state would transform into a mixed
uantum state. Bob must perform the proper unitary operations on his
ubits to remotely construct the quantum state, therefore the final state
𝑟
𝑜𝑢𝑡 may be written as the density matrix indicated in the following
q. (8).
𝑟
𝑜𝑢𝑡 = 𝑇 𝑟𝑖1𝑖2 ...𝑖𝑛−1{ [𝜌𝑘 ⊗ 𝜉𝑟(𝜌𝑙)] †} (8)

here 𝑇 𝑟𝑖1𝑖2 ...𝑖𝑛−1 is the partial trace over the qubits 𝑖1, 𝑖2,… , 𝑖𝑛−1 and 
s the unitary operations, which Bob will apply on his qubit to remotely
repare the quantum state, the operation  is given by the following
q. (9), 

= {I1 ⊗ I2 ⊗… I𝑛−1 ⊗ 𝜎𝑖1𝑖2 ...𝑖𝑛−1𝑛 }{|𝜙⟩12⟨𝜙|12 ⊗ I3... ⊗ I𝑛}

{I1 ⊗ I2...𝑈𝑗1𝑗2 ... ⊗ I𝑛}{I1 ⊗ I2...𝑈𝑘1 ... ⊗ I𝑛} (9)

here 𝜎𝑖1𝑖2 ...𝑖𝑛−1𝑛 is Bob’s recovery unitary operations after Alice has
easured her qubit and communicated her result to Bob via a classical

hannel, |𝜙⟩12⟨𝜙|12 is the Bell basis measurement on the first two
ubits, 𝑈𝑗1𝑗2 represents the C-NOT gate from qubit 𝑗1 to 𝑗2 and 𝑈𝑘1
epresents the unitary gate on qubit 𝑘1. The unitary operations vary
ccording to the collapse states of Alice, Charlie, and David, as given
n the Table 1. By computing the fidelity between the initial two-
ubit state |𝜉⟩ and the density matrix 𝜌𝑟𝑜𝑢𝑡, the influence of noise in
he entangled channel can now be illustrated. Fidelity reflects the
roximity between two quantum states and provides a mathematical
ormula for quantifying the degree of resemblance between quantum
tates. The mathematical expression for nose-effected fidelity is given
y Eq. (10) [39].

= ⟨𝛹 |𝜌𝑟𝑜𝑢𝑡|𝛹⟩ (10)

Due to the fact that this communication is occurring under the
nfluence of noise, some quantum information may be lost during the
emote state preparation. Fidelity is the ideal statistic for measuring
ow much data is lost. When the fidelity  = 1, this indicates the
deal case where the noise has not affected the communication, and
o information has been lost. Meanwhile,  = 0 implies that the
oise has very badly affected the communication, and the state be-
ng communicated has been changed completely to a different state
esulting in all the information being lost. Thus, the fidelity ranges
etween 0 and 1, i.e., 0 ≤  ≤ 1. Next, we delve into the analysis of
he impact of six distinct forms of noise (bit-flip, phase-flip, bit-phase-

lip, amplitude damping, phase damping, and depolarizing noise) on

4

he quantum communication system. The entangled channel outlined
n Eq. (2) can be factored as demonstrated in Eq. (11).

𝛹⟩ = 1
32

(

|000⟩(|0⟩|𝜇+⟩ + |1⟩|𝜆+⟩) + |001⟩(|0⟩|𝜆−⟩ − |1⟩|𝜇−⟩)

+ |010⟩(|0⟩|𝜆+⟩ − |1⟩|𝜇+⟩) + |011⟩(|0⟩|𝜇−⟩ + |1⟩|𝜆−⟩)

+ |100⟩(−|0⟩|𝜆−⟩ − |1⟩|𝜇−⟩) + |101⟩(|1⟩|𝜆+⟩ − |0⟩|𝜇+⟩)

+ |110⟩(|0⟩|𝜇−⟩ − |1⟩|𝜆−⟩) + |111⟩(|0⟩|𝜆+⟩ + |1⟩|𝜇+⟩)
)

(11)

here |𝜆±⟩ = 1
√

2
(|011⟩ ± |100⟩) and |𝜇±⟩ = 1

√

2
(|000⟩ ± |111⟩)

.1. Bit-flip noisy environment

The bit-flip noise changes the state of computational qubit |0⟩ to |1⟩
and vice-versa with probability 𝜂𝑏 and the qubits remain unchanged
with the probability (1 − 𝜂𝑏)[40,41]. Its operations on a qubit can
be described by Kraus operators given by the following matrices in
Eq. (12)

𝐸𝑏0 =
√

1 − 𝜂𝑏I =
√

1 − 𝜂𝑏

(

1 0
0 1

)

, 𝐸𝑏1 =
√

𝜂𝑏X =
√

𝜂𝑏

(

0 1
1 0

)

(12)

Where 𝜂𝑏 ∈ [0, 1] represents the probability parameter for the bit-
lip error in the quantum system. The study of the influence of bit-flip
oise on the entangled channel can be undertaken by examining the
ensity matrices of the noisy channel. The density matrix of the channel
ubjected to bit-flip noise is represented by 𝑏(𝜌), as demonstrated in
q. (13).

𝑏(𝜌) = 1
32

{

(1 − 𝜂𝑏)7
[

|𝛹⟩ ⟨𝛹 |
]

+ (𝜂𝑏)7
[

|111⟩(|1⟩|𝜇+⟩ + |0⟩|𝜆+⟩)

+ |110⟩(|0⟩|𝜇−⟩ − |1⟩|𝜆−⟩) + |101⟩(|1⟩|𝜆+⟩ − |0⟩|𝜇+⟩)

− |100⟩(|1⟩|𝜇−⟩ + |0⟩|𝜆−⟩) + |011⟩(|1⟩|𝜆−⟩ − |0⟩|𝜇−⟩)

+ |010⟩(|0⟩|𝜆+⟩ − |1⟩|𝜇+⟩) + |001⟩(|0⟩|𝜆−⟩ − |1⟩|𝜇−⟩)

+ |000⟩(|1⟩|𝜆+⟩ + |0⟩|𝜇+⟩)
]

×
[

⟨111|(⟨1|⟨𝜇+| + ⟨0|⟨𝜆+|)

+ ⟨110|(⟨0|⟨𝜇−| − ⟨1|⟨𝜆−|) + ⟨101|(⟨1|⟨𝜆+| − ⟨0|⟨𝜇+|)

− ⟨100|(⟨1|⟨𝜇−| + ⟨0|⟨𝜆−|) + ⟨011|(⟨1|⟨𝜆−| − ⟨0|⟨𝜇−|)

+ ⟨010|(⟨0|⟨𝜆+| − ⟨1|⟨𝜇+|) + ⟨001|(⟨0|⟨𝜆−| − ⟨1|⟨𝜇−|)

+ ⟨000|(⟨1|⟨𝜆+| + ⟨0|⟨𝜇+|)
]}

(13)

.2. Phase-flip noisy environment

The phase-flip noise affects the phase of the computational qubit. If
he system has a phase-flip noise then the computational qubit changes
rom |1⟩ to −|1⟩, whereas it does not alter the qubit |0⟩. Its Kraus
perators [40,41] are given by Eq. (14),

𝑤
0 =

√

1 − 𝜂𝑤I =
√

1 − 𝜂𝑤

(

1 0
0 1

)

, 𝐸𝑤1 =
√

𝜂𝑤Z =
√

𝜂𝑤

(

1 0
0 −1

)

(14)

where 𝜂𝑤 ∈ [0, 1] represents the probability parameter for the phase-
flip error in the quantum system. The effect of phase-flip noise on the
entangled channel can be studied by using the density matrices of the
noisy phase-affected channel, which is given by 𝑤(𝜌)

𝑤(𝜌) = 1
32

{

(1 − 𝜂𝑤)7
[

|𝛹⟩ ⟨𝛹 |
]

+ (𝜂𝑤)7
[

|000⟩(|0⟩|𝜇−⟩ − |1⟩|𝜆−⟩)

− |001⟩(|0⟩|𝜆+⟩ + |1⟩|𝜇+⟩) − |010⟩(|0⟩|𝜆−⟩ + |1⟩|𝜇−⟩)

− |011⟩(|0⟩|𝜇+⟩ − |1⟩|𝜆+⟩) − |100⟩(|1⟩|𝜇+⟩ − |0⟩|𝜆+⟩)

− |101⟩(+|0⟩|𝜇−⟩ + |1⟩|𝜆−⟩) + |110⟩(|0⟩|𝜇+⟩ + |1⟩|𝜆+⟩)

− |111⟩(|0⟩|𝜆−⟩ − |1⟩|𝜇−⟩)
]

×
[

⟨000|(⟨0|⟨𝜇−| − ⟨1|⟨𝜆−|)

− ⟨001|(⟨0|⟨𝜆+| + ⟨1|⟨𝜇+|) − ⟨010|(⟨0|⟨𝜆−| + ⟨1|⟨𝜇−|)

− ⟨011|(⟨0|⟨𝜇+| − ⟨1|⟨𝜆+|) − ⟨100|(⟨1|⟨𝜇+| − ⟨0|⟨𝜆+|)

− ⟨101|(+⟨0|⟨𝜇−| + ⟨1|⟨𝜆−|) + ⟨110|(⟨0|⟨𝜇+| + ⟨1|⟨𝜆+|)

− ⟨111|(⟨0|⟨𝜆−| − ⟨1|⟨𝜇−|)
]}

(15)



D. Singh, S. Kumar and B.K. Behera Optics Communications 535 (2023) 129352

w
w
e
a
E



3

s
a
g

𝐸

3.3. Bit-phase-flip noisy environment

The combination of a phase flip and a bit flip is referred to as a
bit-phase flip, and it is represented by the Kraus operators given in
Eq. (16) [40,41],

𝐸𝑓 =
√

1 − 𝜂𝑓 I =
√

1 − 𝜂𝑓

(

1 0
0 1

)

, 𝐸𝑓 =
√

𝜂𝑓Y =
√

𝜂𝑓

(

0 −𝑖
𝑖 0

)

(16)

where 𝜂𝑓 ∈ [0, 1] denotes the bit-phase-flip noise parameter probability,
which defines the likelihood of an error in the quantum state arising
owing to a computational qubit. The impact of bit-phase flip noise
on the entangled channel can be determined by calculating the noise-
affected density matrix. The impacted density matrix under bit-phase
flip noise is denoted by 𝑓 (𝜌), which is provided by Eq. (17)

𝑓 (𝜌) = 1
32

{

(1 − 𝜂𝑓 )7
[

|𝛹⟩ ⟨𝛹 |
]

− (𝜂𝑓 )7
[

|111⟩(−|1⟩|𝜇−⟩ + |0⟩|𝜆−⟩)

− |110⟩(|0⟩|𝜇+⟩ + |1⟩|𝜆+⟩) + |101⟩(|1⟩|𝜆−⟩ + |0⟩|𝜇−⟩)

+ |100⟩(|1⟩|𝜇+⟩ − |0⟩|𝜆+⟩) − |011⟩(|0⟩|𝜇+⟩ − |1⟩|𝜆+⟩)

+ |010⟩(|0⟩|𝜆−⟩ + |1⟩|𝜇−⟩) + |001⟩(|0⟩|𝜆+⟩ + |1⟩|𝜇+⟩)

− |000⟩(|0⟩|𝜆−⟩ + |0⟩|𝜇−⟩)
]

×
[

⟨111|(−⟨1|⟨𝜇−| + ⟨0|⟨𝜆−|)

− ⟨110|(⟨0|⟨𝜇+| + ⟨1|⟨𝜆+|) + ⟨101|(⟨1|⟨𝜆−| + ⟨0|⟨𝜇−|)

+ ⟨100|(⟨1|⟨𝜇+| − ⟨0|⟨𝜆+|) − ⟨011|(⟨0|⟨𝜇+| − ⟨1|⟨𝜆+|)

+ ⟨010|(⟨0|⟨𝜆−| + ⟨1|⟨𝜇−|) + ⟨001|(⟨0|⟨𝜆+| + ⟨1|⟨𝜇+|)

− ⟨000|(⟨0|⟨𝜆−| + ⟨0|⟨𝜇−|)
]}

(17)

3.4. Effect of amplitude damping (AD) noise

The amplitude damping plays a vital role since it is responsible for
characterizing the energy loss of a system, which is the effect that
occurs the most frequently in open systems. The idea of amplitude
damping is crucial to the modeling of energy dissipation in a variety
of quantum systems, and the matrices that follow supply the Kraus
operators for this process [40,41].

𝐸𝑎0 =
(

1 0
0

√

1 − 𝜂𝑎

)

, 𝐸𝑎1 =
(

0
√

𝜂𝑎
0 0

)

(18)

Where 𝜂𝑎 ∈ [0, 1] signifies the decoherence rate of amplitude damping,
hich specifies the likelihood of quantum state inaccuracy associated
ith computational qubits. The influence of amplitude damping on the
ntangled channel may be detected by analyzing the channel’s noise-
ffected density matrix. This matrix is represented by 𝑎, given in
q. (19)

𝑎(𝜌) = 1
32

{[

|000⟩(|0⟩|𝛯+
⟩ +

√

1 − 𝜂𝑎|1⟩|𝛺+
⟩) +

√

1 − 𝜂𝑎|001⟩(|0⟩|𝛺−
⟩

−
√

1 − 𝜂𝑎|1⟩|𝛯−
⟩) +

√

1 − 𝜂𝑎|010⟩(|0⟩|𝛺+
⟩ −

√

1 − 𝜂𝑎|1⟩|𝛯+
⟩)

+ (1 − 𝜂𝑎)|011⟩(|0⟩|𝛯−
⟩ +

√

1 − 𝜂𝑎|1⟩|𝛺−
⟩) −

√

1 − 𝜂𝑎|100⟩(|0⟩|𝛺−
⟩

+
√

1 − 𝜂𝑎|1⟩|𝛯−
⟩) + (1 − 𝜂𝑎)|101⟩(

√

1 − 𝜂𝑎|1⟩|𝛺+
⟩ − |0⟩|𝛯+

⟩)

+ (1 − 𝜂𝑎)|110⟩(|0⟩|𝛯−
⟩ −

√

1 − 𝜂𝑎|1⟩|𝛺−
⟩)

+
√

(1 − 𝜂𝑎)3|111⟩(|0⟩|𝛺+
⟩

+
√

1 − 𝜂𝑎|1⟩|𝛯+
⟩)
]

×
[

⟨000|(⟨0|⟨𝛯+
| +

√

1 − 𝜂𝑎⟨1|⟨𝛺+
|)

+
√

1 − 𝜂𝑎⟨001|(⟨0|⟨𝛺−
| −

√

1 − 𝜂𝑎⟨1|⟨𝛯−
|)

+
√

1 − 𝜂𝑎⟨010|(⟨0|⟨𝛺+
| −

√

1 − 𝜂𝑎⟨1|⟨𝛯+
|)

+ (1 − 𝜂𝑎)⟨011|(⟨0|⟨𝛯−
| +

√

1 − 𝜂𝑎⟨1|⟨𝛺−
|)

−
√

1 − 𝜂𝑎⟨100|(⟨0|⟨𝛺−
| +

√

1 − 𝜂𝑎⟨1|⟨𝛯−
|)

+ (1 − 𝜂𝑎)⟨101|(
√

1 − 𝜂𝑎⟨1|⟨𝛺+
| − ⟨0|⟨𝛯+

|)

+ (1 − 𝜂𝑎)⟨110|(⟨0|⟨𝛯−
| −

√

1 − 𝜂𝑎⟨1|⟨𝛺−
|)

+
√

(1 − 𝜂 )3⟨111|(⟨0|⟨𝛺+
| +

√

1 − 𝜂 ⟨1|⟨𝛯+
|)
]

𝑎 𝑎

5

+ (𝜂𝑎)7 |1111111⟩ ⟨1111111|
}

(19)

where the quantum states |𝛺±
⟩ =

√

1 − 𝜂𝑎
(√

1 − 𝜂𝑎 |011⟩ ± |100⟩
)

√

2
and

|𝛯±
⟩ =

(

|000⟩ ±
√

(1 − 𝜂𝑎)3 |111⟩
)

√

2

3.5. Phase damping noisy environment

Phase damping is a process in quantum physics where the phase
information of a quantum state is lost due to interactions with its
environment. In a noisy environment, the phase damping effect can be
more pronounced, leading to a quicker decay of the phase coherence
and a reduction in the quality of the quantum state. During phase
damping, the fundamental quantum system becomes entangled with
the surrounding environment [42]. The Kraus operators {𝐸𝑝0 , 𝐸

𝑝
1 , 𝐸

𝑝
2}

for phase-damping noise are given in Eq. (20) [40,41].

𝐸𝑝0 =
√

1 − 𝜂𝑝

(

1 0
0 1

)

, 𝐸𝑝1 =

(

√

𝜂𝑝 0
0 0

)

, 𝐸𝑝2 =

(

0 0
0 √

𝜂𝑝

)

(20)

where 𝜂𝑝 ∈ [0, 1] denotes the phase-damping decoherence rate, which
specifies the likelihood of an error occurring in the quantum state
associated with the computational qubit. After the noise has been
introduced into the channel, the affected density matrix can be used
to figure out how phase damping affected the entangled channels. The
affected density matrix under the phase damping noise is denoted by
𝑝.

𝑝(𝜌) = 1
32

{

(1 − 𝜂𝑏)7
[

|𝛹⟩ ⟨𝛹 |
]

+ (𝜂𝑝)7
[

|0000000⟩⟨0000000|

+ |1111111⟩ ⟨1111111|
]}

(21)

.6. Depolarizing noisy environment

When exposed to a depolarizing noisy environment, the quantum
tate’s qubits are depolarized with a probability of 𝜂𝑑 , and the qubits
re left with an invariant probability of (1−𝜂𝑑 ). The following matrices
ive the Kraus operators for depolarizing noise [40,41].

𝑑
0 =

√

1 − 𝜂𝑑

(

1 0
0 1

)

, 𝐸𝑑1 =
√

𝜂𝑑
3

(

0 1
1 0

)

,

𝐸𝑑2 =
√

𝜂𝑑
3

(

0 −𝑖
𝑖 0

)

, 𝐸𝑑3 =
√

𝜂𝑑
3

(

1 0
0 −1

)

(22)

After introducing noise into a channel, the impact of depolarizing
noise on the entangled channel may be determined by analyzing the
affected density matrix, the noise affected density matrix under the
depolarizing noise is denoted by 𝐷

𝑑 (𝜌) = 1
32

{

(1 − 𝜂𝑑 )7
[

|𝛹⟩ ⟨𝛹 |
]

+ (𝜂𝑏)7
[

|111⟩(|1⟩|𝜇+⟩ + |0⟩|𝜆+⟩)

+ |110⟩(|0⟩|𝜇−⟩ − |1⟩|𝜆−⟩) + |101⟩(|1⟩|𝜆+⟩ − |0⟩|𝜇+⟩)

− |100⟩(|1⟩|𝜇−⟩ + |0⟩|𝜆−⟩) + |011⟩(|1⟩|𝜆−⟩ − |0⟩|𝜇−⟩)

+ |010⟩(|0⟩|𝜆+⟩ − |1⟩|𝜇+⟩) + |001⟩(|0⟩|𝜆−⟩ − |1⟩|𝜇−⟩)

+ |000⟩(|1⟩|𝜆+⟩ + |0⟩|𝜇+⟩)
]

×
[

⟨111|(⟨1|⟨𝜇+| + ⟨0|⟨𝜆+|)

+ ⟨110|(⟨0|⟨𝜇−| − ⟨1|⟨𝜆−|) + ⟨101|(⟨1|⟨𝜆+| − ⟨0|⟨𝜇+|)

− ⟨100|(⟨1|⟨𝜇−| + ⟨0|⟨𝜆−|) + ⟨011|(⟨1|⟨𝜆−| − ⟨0|⟨𝜇−|)

+ ⟨010|(⟨0|⟨𝜆+| − ⟨1|⟨𝜇+|) + ⟨001|(⟨0|⟨𝜆−| − ⟨1|⟨𝜇−|)

+ ⟨000|(⟨1|⟨𝜆+| + ⟨0|⟨𝜇+|)
]

− (𝜂𝑓 )7
[

|111⟩(−|1⟩|𝜇−⟩ + |0⟩|𝜆−⟩)

− |110⟩(|0⟩|𝜇+⟩ + |1⟩|𝜆+⟩) + |101⟩(|1⟩|𝜆−⟩ + |0⟩|𝜇−⟩)

+ |100⟩(|1⟩|𝜇+⟩ − |0⟩|𝜆+⟩) − |011⟩(|0⟩|𝜇+⟩ − |1⟩|𝜆+⟩)

+ |010⟩(|0⟩|𝜆−⟩ + |1⟩|𝜇−⟩) + |001⟩(|0⟩|𝜆+⟩ + |1⟩|𝜇+⟩)

− |000⟩(|0⟩|𝜆−⟩ + |0⟩|𝜇−⟩)
]

×
[

⟨111|(−⟨1|⟨𝜇−| + ⟨0|⟨𝜆−|)

− ⟨110|(⟨0|⟨𝜇+| + ⟨1|⟨𝜆+|) + ⟨101|(⟨1|⟨𝜆−| + ⟨0|⟨𝜇−|)
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s
t
q
e

𝜌

t

𝑡

+ ⟨100|(⟨1|⟨𝜇+| − ⟨0|⟨𝜆+|) − ⟨011|(⟨0|⟨𝜇+| − ⟨1|⟨𝜆+|)

+ ⟨010|(⟨0|⟨𝜆−| + ⟨1|⟨𝜇−|) + ⟨001|(⟨0|⟨𝜆+| + ⟨1|⟨𝜇+|)

− ⟨000|(⟨0|⟨𝜆−| + ⟨0|⟨𝜇−|)
]

+ (𝜂𝑤)7
[

|000⟩(|0⟩|𝜇−⟩ − |1⟩|𝜆−⟩)

− |001⟩(|0⟩|𝜆+⟩ + |1⟩|𝜇+⟩) − |010⟩(|0⟩|𝜆−⟩ + |1⟩|𝜇−⟩)

− |011⟩(|0⟩|𝜇+⟩ − |1⟩|𝜆+⟩) − |100⟩(|1⟩|𝜇+⟩ − |0⟩|𝜆+⟩)

− |101⟩(+|0⟩|𝜇−⟩ + |1⟩|𝜆−⟩) + |110⟩(|0⟩|𝜇+⟩ + |1⟩|𝜆+⟩)

− |111⟩(|0⟩|𝜆−⟩ − |1⟩|𝜇−⟩)
]

×
[

⟨000|(⟨0|⟨𝜇−| − ⟨1|⟨𝜆−|)

− ⟨001|(⟨0|⟨𝜆+| + ⟨1|⟨𝜇+|) − ⟨010|(⟨0|⟨𝜆−| + ⟨1|⟨𝜇−|)

− ⟨011|(⟨0|⟨𝜇+| − ⟨1|⟨𝜆+|) − ⟨100|(⟨1|⟨𝜇+| − ⟨0|⟨𝜆+|)

− ⟨101|(+⟨0|⟨𝜇−| + ⟨1|⟨𝜆−|) + ⟨110|(⟨0|⟨𝜇+| + ⟨1|⟨𝜆+|)

− ⟨111|(⟨0|⟨𝜆−| − ⟨1|⟨𝜇−|)
]}

(23)

4. Security analysis

Quantum communication protocols, in comparison to their classical
counterparts, often have the characteristic of a superior level of secu-
rity. Our protocols are protected not just from attacks coming from the
outside, but also from those coming from inside the system from the
dishonest participant. Here, we provide two different types of security
analysis about the process of remotely preparing a state. The first of
these is an outside attack from an eavesdropper, attempting to learn
the state that is being remotely prepared. And the second threat is an
attempt from a non-authorized participant who is interested in finding
out the quantum state that is being prepared remotely.

4.1. Outside attack

Before the remote state preparation scheme is put into action, the
seven-qubit entangled channel is to be created from the six-qubit Borras
et al. state and then distributed among the participants. Without loss
of generality, suppose Alice prepares the state |𝛹⟩1234567 and send the
qubits (2, 3) to Bob, qubits (4, 6) to Charlie and (5, 7) to David. Alice
includes a predetermined number of decoy-state particles in the trans-
mission which are randomly distributed in one of the following four
quantum states {|0⟩ , |1⟩ , |+⟩ , |−⟩}. After it has been determined that all
three participants have received the particles, Alice will then proceed to
make the statement about the placements of the decoy particles as well
as the measurement basis. Then, participants Bob, Charlie, and David
measure their qubits in accordance with the provided basis and declare
their results. Next, Alice makes a comparison between the results of the
measurement and the initial states of the decoy particles. The fact that
any eavesdropping leaves a trace in the outcomes of the decoy sampling
photons [43], enables the security checking process to detect multiple
types of attacks coming from an outside attacker Eve. These attacks
include several attacks mentioned in [24] named as an intercept-resend
attack, a measurement-resend attack, an entanglement-measure attack,
and a denial-of-service attack. During the security checking, the impact
of these attacks will be detected with a probability larger than zero.
This verification approach is based on the notion of the BB84 QKD
protocol [44], which has been shown to be completely safe by a number
of different researchers [45]. Moreover, the particles used to construct
the quantum channel do not transmit any concealed information. As
a result, if an eavesdropper is present, she is not only identifiable but
also incapable of gathering any relevant information during the security
screening process. After the completion of the security checks, the
entangled channel that is sufficiently safe will be distributed among the
participants. If there is evidence of eavesdropping, the participants will
abandon this procedure and begin over. After three different parties
have validated the safety of the quantum channel, an eavesdropper
from the outside can no longer attack the protocol since no qubits are
being sent at this point. During the implementation of the protocol,
only classical information is sent, which has no relevance to the secrets.
Therefore, our remote state preparation protocol is robust against an

attack from an outsider.

6

4.2. Inside attack

It is possible for a participant to carry out his attack by entangling
an auxiliary particle with his own particle. Let us suppose that Alice
is the participant interested in finding out about Bob’s state, being
remotely prepared in an unethical way. She can prepare the auxiliary
state |𝜀⟩ and entangle it using the local unitary operation ̂ , which is
defined as follows:

̂ (|0⟩1 |𝜀⟩𝐸 ) = |0⟩1 ||𝜀00⟩ + |1⟩1 ||𝜀01⟩

̂ (|1⟩1 |𝜀⟩𝐸 ) = |0⟩1 ||𝜀10⟩ + |1⟩1 ||𝜀11⟩ (24)

Where ⟨𝜀00|𝜀00⟩+ ⟨𝜀01|𝜀01⟩ = 1 and ⟨𝜀10|𝜀10⟩+ ⟨𝜀11|𝜀11⟩ = 1. Suppose
Charlie and David simultaneously measure their qubits and broadcast
their results to Bob through a classical channel. Without compromising
generality, assume that Charlie and David’s measurement results are
|00⟩𝐶1𝐶2 |00⟩𝐷1𝐷2

. From Table 1, Alice’s measurement result is |𝛶1⟩𝐴 or
|𝛶2⟩𝐴. After completing the unitary operations (24) on her state, Alice
entangled an auxiliary qubit on it, and the resulting state becomes

|𝛹⟩𝐴𝐸𝐵1𝐵2
= 1

4

(

̂ |

|

𝛶1⟩𝐴 |𝜀⟩𝐸
)

⊗
[ 1
√

2
(𝛼 |00⟩ + 𝛽 |10⟩ + 𝛼 |11⟩ − 𝛽 |01⟩)

]

+ 1
4

(

̂ |

|

𝛶2⟩𝐴 |𝜀⟩𝐸
)

⊗
[ 1
√

2
(𝛼 |10⟩ − 𝛽 |00⟩ − 𝛼 |01⟩ − 𝛽 |11⟩)

]

= 1
4

[

𝛼(|0⟩ |
|

𝜀00⟩ + |1⟩ |
|

𝜀01⟩) + 𝛽(|0⟩ ||𝜀10⟩ + |1⟩ |𝜀11⟩)
]

[

𝛼 |
|

𝜓+⟩ − 𝛽 |𝜙−
⟩

]

+ 1
4

[

𝛼(|0⟩ |
|

𝜀10⟩ + |1⟩ |
|

𝜀11⟩)

− 𝛽(|0⟩ |
|

𝜀00⟩ + |1⟩ |𝜀01⟩)
][

−𝛽 |
|

𝜓+⟩ − 𝛼 |𝜙−
⟩

]

(25)

At this point, Alice must follow the rules for preparing the remote
tate and tell Bob the result of her measurement. Bob will then do
he unitary operations on his qubit. Now, we will concentrate on the
uantum system of particles 𝐴𝐸, which represents a portion of the
ntire system.

𝐴𝐸 = 𝑡𝑟𝐵1𝐵2

(

𝜌𝐴𝐸𝐵1𝐵2

)

=
(𝛼4 + 𝛽4)

16

[

(|0⟩ |
|

𝜀00⟩ + |1⟩ |
|

𝜀01⟩)(⟨0|⟨𝜀00| + ⟨1|⟨𝜀01|)

+ (|0⟩ |
|

𝜀10⟩ + |1⟩ |
|

𝜀11⟩)(⟨0|⟨𝜀10| + ⟨1|⟨𝜀11|)
]

=
(𝛼4 + 𝛽4)

16

(

(|
|

0𝜀00⟩ + |

|

1𝜀01⟩)(⟨0𝜀00| + ⟨1𝜀01|) + (|
|

0𝜀10⟩ + |

|

1𝜀11⟩)

(⟨0𝜀10| + ⟨1𝜀11|)
)

(26)

Now, we will check the purity of the quantum state by evaluating
he trace of the square of the density matrix, given by

𝑟(𝜌2𝐴𝐸 ) = 2
(𝛼4 + 𝛽4

16

)2
+ 2

(𝛼4 + 𝛽4

16

)(𝛼4 + 𝛽4

16

)

|⟨𝜀00|𝜀10⟩ + ⟨𝜀01|𝜀11⟩|
2

≤ 2
(𝛼4 + 𝛽4

16

)2[
1 + (|𝜀00|𝜀10| + |𝜀10|𝜀11|)2

]

≤ 2
(𝛼4 + 𝛽4

16

)2 [
1 +

(
√

⟨𝜀00|𝜀00⟩⟨𝜀10|𝜀10⟩ +
√

⟨𝜀01|𝜀01⟩⟨𝜀11|𝜀11⟩)2
]

≤ 2
(𝛼4 + 𝛽4

16

)2 [
1 +

(

⟨𝜀00|𝜀00⟩ + ⟨𝜀10|𝜀10⟩
2

+
⟨𝜀01|𝜀01⟩ + ⟨𝜀11|𝜀11⟩

2

)2 ]

Simplifying the expression using the Cauchy–Schwarz inequality
and the triangular inequality, we get

𝑡𝑟(𝜌2𝐴𝐸 ) < 1 (27)

If this is the case, the quantum state of the particle 𝐴𝐸 will be in a
mixed state, and Alice will not be able to extract any information from
the system. That is to say, the inner attack initiated by Alice cannot
be considered valid and Alice will not be able to steal any information
from the attack.
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Fig. 2. The plot of fidelity against the noise parameter 𝜂 for remote state preparation
scheme under all the six kinds of quantum noise.

5. Discussion and conclusion

In this study, the deterministic remote state preparation is studied
via the seven-qubit entangled channel, created from the maximally
entangled Borras et al. state under the effect of six different kinds of
noises. First, the seven-qubit entangled channel was constructed from
the highly entangled Borras et al. state by taking an ancillary qubit
and then performing a C-NOT operation from the terminal qubit of the
Borras state to the ancillary qubit. This was done in order to establish
the highly entangled Borras state. It generates an entangled channel in
order to facilitate the remote state preparation of a two-qubit quantum
state. The qubits that make up the entangled channels are split up
among the four participants. Alice is the one who is sending the in-
formation, while Bob is the one who is participating and preparing the
state at his end remotely. After Alice and the other two players, Charlie
and David, have sent their measurement results to Bob using a classical
channel, Bob then performs the relevant operation to his qubit in order
to remotely prepare the state. The operations in the different scenarios
are presented in Table 1. Here, the benefit of employing a seven-qubit
channel is that we may distribute six of the seven qubits among the
three participants, each of whom has two qubits. In this protocol, they
serve as a controller, and without their measurement findings, Bob
cannot remotely prepare the quantum state at his end. In addition, the
impacts of six distinct types of noise are investigated during the course
of this study. The noise may be modeled using the Kraus operators by
applying them to the entangled channel. We have evaluated the density
matrices for all the noise channels and calculated the fidelity of the
remotely prepared state with respect to the noise-affected channel. For
various noise channels, it is possible to discern how the system loses
information due to decoherence when it interacts with its environment.
A fidelity metric has been used to calculate the amount of information
that is lost due to each type of noise, for which variation of fidelity with
respect to the noise parameter 𝜂 is plotted in Fig. 2. The plot shows
that as the noise parameter increases in the range [0, 1], the fidelity
shows different trends in different types of noise. The graph reveals that
depolarizing noise has the most negative effect on the channel, hence
reducing its fidelity and causing information loss. In addition, the phase
flip noise loses the least amount of information compared to all others.
Moreover, the security analysis is conducted for a protocol intruder. In
the event of an external attack, an eavesdropper may attempt to attack
the protocol, tamper with the process, and determine the prepared
quantum state. However, it appears that our protocol is secure against
these types of threats, as outsiders cannot steal information. Again,
7

in the event of an inside attack, a dishonest player may attempt to
steal information by entangling an auxiliary qubit |𝜀⟩ with his qubit
in order to determine the state being prepared. Attempting to do so,
however, will result in the quantum state transforming into a mixed
state, resulting in the loss of information.
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